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Ecosystem impacts from Nutrient loading 

• Harmful Algal 
Blooms 

• Toxin 
production 

• Fish Kills  
• Oxygen 

depletion 
• Greenhouse 

gas 
production 
 

Daniel Hoffman 

Presenter
Presentation Notes
This excess N loading can create all kinds of problems in coastal ecosystems.  Too much nitrogen can cause algal blooms.  Harmful algal blooms can create neurotoxins.  Those plus the resulting low oxygen areas can lead to massive fish kills and increased greenhouse gas production



Anthropogenic N ≥ Biological N fixation 

 
Galloway et al 2003 

Presenter
Presentation Notes
But the main reason I’m so passionate about the nitrogen cycle is that we as humans have so fundamentally altered nitrogen cycling.  In this graph, you can see that the human population and the nitrogen supply have both increased exponentially over the last 100 years.  This is no accident– nitrogen fertilizer created through the Haber-Bosch process supports the lives of about 1/3 of our population.  However, the flip side of this is that there is more than 3 times the amount of reactive nitrogen being created every year. 



 

Courtesy of Hans Paerl 



Nutrient Addition experiments 

 

Courtesy of Wayne Wurtsbaugh 
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Community Dominance: Lake Erie 
cyanobacterial Harmful Algals Blooms 

© University of New 
Hampshire 

From 
http://cyanobacteria.myspecies.info 

1960s and 1970s 1990s to Present 



N Bioavailability 

 
 
 

Triple bond -> difficult to break 
18 ATP required for each N2 molecule 

N2: limited bioavailability 
 

More useful forms:  
NH4

+, Urea, NO3
- 



N and Cyanobacteria Toxicity 

© Jussi Meriluoto 

Gobler et al. 2016 



N and Cyanobacteria Toxicity 

• Reduced N form additions to non-N-
fixing cyanobacteria can increase 
toxicity. 

(Davis et al. 2010, 2015; Chaffin et al. 2018 ) 
• Low NH4

+ concentrations can inhibit 
toxin production 

 (Kuniyoshi et al. 2010) 
• NH4

+ and urea uptake may lead to 
both increased Microcystis biomass 
and toxin production 

 (Harke et al. 2016) 

Microcystins (µg/L) 

Chaffin et al. 2018 



Implications for Community Shift 

Gobler et al. 2016 



 Nitrogen 

N2 NO2
- NO3

- NH3/NH4
+ 

DON DIN 

Dinitrogen Gas Nitrite Nitrate Ammonia/Ammonium 

N2O 
Dissolved Organic N Nitrous Oxide Dissolved Inorganic N Urea 



Ammonium: the common currency 

Diatoms use and store nitrate efficiently 
Anja Kamp 

Most phytos 
greatly prefer 

& Microcystis has a 
very strong affinity 
for NH4

+ 

© Susie Woods 



N Assimilation in Phytoplankton 

Glibert et al. 2015 Beversdorf et al. 2015 



N in Fertilizer 

 
 
Global shift toward urea 
and/or anhydrous ammonia.  
 
Urea = >50% of worldwide 
applications 
(Glibert et al. 2006) 
 

© Yara International 



N Form and Community Structure 

• NO3
- : favors diatoms 

• Reduced N (NH4
+ and urea): favors cyanobacteria 

McCarthy et al. 2009 



(Limited) Regulations on N Inputs 

 
• U.S. EPA Bulletin 820-S-15-001 
 Advocates for dual nutrient control strategy 
 

 
 
 

• No N reduction targets in Ohio 
 Proposed 40% reduction in P loading 
 Great Lakes Water Quality Agreement – Annex IV 



Case study: Lake Erie 

Maumee River 



Increasing CyanoHABs in Western  
Lake Erie linked to increase in SRP 



Maumee N Loads to Western Lake Erie  

Stow et al. 2015 



N Inputs to Western Lake Erie 

• Maumee River: largest 
Great Lakes watershed 
 

• Kjeldahl N (NH4
+ + organic N) 

load from Maumee River 
to Lake Erie  

 = 9000 metric tons/yr 
 ¼ of total N load  
 (Richards et al. 2010) 



Reduced N % of Maumee Load increasing 
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Newell et al., 2019 



*Most values outside of summer are <1; y-axis scale starts at 1 

TKN:NO3 load 
 70s & 80s 

 90s 
 2000+ 

July 1 Oct 31 

Newell et al., 2019 



TKN/NO3
- vs Chlorophyll concentrations 

Newell et al., 2019 



y = 0.8544x + 2.0846 
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Maumee annual average TKN:NO3 

p = 0.0142 

The proportion of reduced to oxidized N in the Maumee River 
load is significantly correlated to the increase in cyanobacterial 

bloom biomass in Western Lake Erie. 

Newell et al., 2019 
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Nitrogen Cycle 

Nitrification 

Anammox 
Direct 
Denitrification Nitrogen  

fixation 

N2
 

Nitrogen  
fixation 

DNRA 

sediment 

water 

Org N 

Presenter
Presentation Notes
Set up the diagram– sediment/water

Here is a pretty simplified version of the nitrogen cycle at a water-sediment interface. Nitrogen gets fixed to ammonium, and that ammonium gets removed through nitrification followed by anammox or denitrification.  It becomes N2 gas again, which is biologically unavailable.  Or it can be recycled internally through DNRA



Newell Lab research objectives 

• To use a paired molecular-biogeochemical 
approach to disentangle the intricacies of the 
nitrogen cycle 

• To understand the impact of human activities 
(primarily climate change and increased 
nitrogen loading) on the nitrogen cycle 
 



Ammonium: the common currency 

NH4
+ half-saturation 

constant (Km) for 
Microcystis is high: 
0.5-37 μM  
Nicklisch and Kohl 2007, Takeya et al. 2004 
 

Ammonia-oxidizing 
bacteria can have a very 
high Km (5-300 μM) but  
ammonia-oxidizing 
archaea have a very, very 
low Km 0.05-0.15 μM 
 

www.ugc.edu  

© Susie Woods 



Internal N loading 

 
• How quickly is NH4

+ recycled? 
• To what extent can NH4

+ recycling support 
cyanobacterial bloom growth? 

• When do phytoplankton become N-limited? 
 

Research Questions 



N Inputs to Western Lake Erie 

• Maumee River: largest 
Great Lakes watershed 
 

• Kjeldahl N (NH4
+ + organic N) 

load from Maumee River 
to Lake Erie  

 = 9000 metric tons/yr 
 ¼ of total N load  
 (Richards et al. 2010) 



Ammonium cycling drives 
harmful algal blooms  

in Sandusky Bay,  Lake Erie 
Justyna J. Hampel, Mark J. McCarthy, 

George S. Bullerjahn, Robert M. 
McKay, Michelle Neudeck, and Silvia E. 

Newell 
 

 



Sandusky Results: Potential  
Ammonium Uptake and Regeneration 

Hampel et al. 2019 



NH4
+ 

TN  

June 5th, 2017 

21.1 metric tons N 

40.7 metric tons NH4
+  

1.9x 

Hampel et al., 2019 Harmf   

Presenter
Presentation Notes
21 metric tons from the river, 40 metric tons regenerated



NH4
+ 

TN  

July 31st, 2017 

1.73 metric tons N 

62.5 metric tons NH4
+  

36x 

Hampel et al., 2019 Harmf   

Presenter
Presentation Notes
1.7 metric tons from the river, 62.5 regnerated



NH4
+ 

TN  

August 14th, 2017 

0.257 metric tons N 

123 metric tons NH4
+  

479x 

Hampel et al., 2019 Harmf   

Presenter
Presentation Notes
0.2 metric tons from the river, 123 regenerated, 478 times more



NH4
+ 

TN  

August 28th, 2017 

0.167 metric tons N 

199 metric tons NH4
+  

1190x 

Hampel et al., 2019 Harmf   

Presenter
Presentation Notes
0.17 metric tons from the river, almost 200 regenerated, 1190 more



Sandusky Bay: Ammonium 
Regeneration 

• Regeneration in the bay increases throughout the 
summer suggesting that toward the end of summer the 
bloom relies heavily on regenerated NH4

+.  
– With undetectable DIN in the water column, regeneration 

sustains the bloom 

 
• When extrapolated to the whole bay volume, daily NH4

+ 

regeneration exceeded daily TN loadings at all sampling 
events.  
– Useful tool for N management practices and nutrient 

regulations.  

Presenter
Presentation Notes
Bells not differ between June and August



Eutrophication in the Great Miami River: 
To What Extent Can Sediment Nitrogen Loss 
Compensate for Nutrient Over-enrichment? 

Lee Slone, M.Sc. student – WSU 
Slone et al. 2018 

 
Slone et al., 2018 





Collect intact sediment cores and 
near-bottom water for 
continuous-flow incubations to 
measure SWI N fluxes and 
transformations. 

Photos courtesy of  
Nate Christopher at  
Fondriest Env. 



Lee Slone 

Site 3:  
above dam 

Site 4:  
below dam 
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Pump 

Inflow 
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Denitrification 

NO3
-   →   NO2

-   →   NO  →   N2O   →   N2 
 

• Requires anoxia 
• Pathway ends at N2O more often under low 

oxygen 
• Removes excess N from ecosystem 
• Critical ecosystem service in eutrophic 

systems! 



Dissolved gas fluxes 

• Dissolved gases (28N2, 29N2, 30N2, O2, Ar) 

• MIMS (Kana et al. 1994, An et al. 2001) 
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Impact on River Nutrient Load 
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LGMR Conclusions 
• Denitrification removed nitrate at very high rates during 

high river flow, but N removal was still exceeded by 
external inputs (to a lesser extent during low flow). 

• Sediments were a source of bioavailable ammonium, 
potentially contributing to local algal blooms, but were a 
strong nitrate sink and overall net N sink. 

• River sediments were a P source, contributing an additional 
2 - 6 % to the external P load from the agricultural and 
urban watershed. 

• These results support calls for a dual nutrient (N & P) 
management approach to control eutrophication in inland 
waters and coastal marine systems. 



Eutrophication in the Great Miami River: 
To What Extent Can Sediment Nitrogen Loss 
Compensate for Nutrient Over-enrichment? 

Lee Slone, M.Sc. student – WSU 
Slone et al. 2018 

 
Slone et al., 2018 
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Nutrient sample collection 

• Megan Reed et al. 



Journal article survey of nutrient sampling 
methods 
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Why does accurate nutrient data 
matter? 

• Using data from Hampel et al 2018: 
Uptake: 0.759 µmol L-1 h-1 

Regeneration: 0.337 µmol L-1 h-1 
Ambient concentration of ammonium (NH4

+) : 0.33 µM 
 
An unfiltered water sample stored in the dark would have: 
[NH4

+]: 0.119 µM after 30 minutes 
[NH4

+]: 0 µM after only 47 minutes! 



Methods- Study site 

Presenter
Presentation Notes
Site map for florida and Lake superior stuff



Sample collection 

Reed et al., L&O Methods, in review 



Results- Phosphate concentrations 

Presenter
Presentation Notes
FIX THIS Graph (zero for conc)



Ammonium concentrations 

Presenter
Presentation Notes
Also fix these graphs



Percent change of phosphate 
concentrations 



Percent change of ammonium 
concentrations 

Reed et al., L&O Methods, in review 



Concentration of P against percent 
change from 0.22 µM sample filtered 

in the field 
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Concentration of N against percent 
change from 0.22 µM sample 

filtered in the field 
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Sample Collection Conclusions 

• Failing to filter samples in the field can lead to significant 
changes in the concentration compared to the ambient value 
 

• Filtering in the field with 0.70 um filters has the most 
significant impact on nutrient concentration 
 

• More specific filtering methods should be considered in order 
to ensure the accuracy of reporting nutrient monitoring data 
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