Stormwater BMPs for Buildings and Grounds

City of Dayton

National Pollutant Discharge Elimination System (NPDES) Phase I Stormwater Permit

"When it rains, Dayton drains"

Why Green Roofs?

Benefits of Green Roofs

- Reduce and improve stormwater runoff
- Improve energy efficiency of building
- Increase lifespan of roof
- Aesthetic improvement
- Improve air quality
- Mitigate urban heat island effect

Schematic of Green Roof

Schematic of Green Grid Units

Pre and Post Installation Storm Water Quality Sampling

Sample runoff for:

- Volatile Organic Compounds (VOCs)
- General Chemistry Phosphate, Nitrate
- Total Metals

City Hall Green Roof

Installed June 13, 2009

Planning

- Design Firm and Existing Roof Warranty
- Political Figures
- Regulators
- Community-Public
- Environmental Groups
- City Staff
- Contractors

Partnerships

Installation

- Design Firm
- Installation Contractor
- Existing Roof Warranty
- Publicity
- City Staff

Maintenance

- Design Firm short term maintenance
- Community collaboration – long term maintenance
- City Staff

Community Involvement

Lessons Learned

- Review building structural assessment
- Collaboration between existing roof warranty contractor, designer and installer
- Involve City Departments early in the planning
- process...i.e. inspectors etc.

Green Roof Resources

- Green Roofs for Healthy Cities
- GSA Green Roof Report
- City of Dayton Engineering Design Standards
- EPA Soak Up the Rain: Green Roofs
- Other green roofs in the area
 - UD Kennedy Union
 - Montgomery County Environmental Services
 - Dayton Metro Library Downtown
 - SD1 Public Service Park in Northern Kentucky

Other Stormwater BMPs

Sediment captured by the Flex-Storm Filter

Cleaned manhole showing "Snout" over outlet

Street Maintenance Parking Lot

Trash Truck Parking Lot BMP

OTTAWA ST

OTTAWAS

BaySaver Location

E MONDMENT AV

1

s.

Baysaver Performance

The unit is effective at capturing both solids and oil from the storm water run-off of the "Packer Lot".

Employee Parking Lot – Pervious Concrete

Community Gardens as BMPs

Street Tree Farms as BMPs

Future BMPs

Lakeside and Pineview Neighborhood

Lake cleanup and inlet protection BMPs

(Under consideration)

CITY OF DAYTON Water Water One source Regional • Reliable • Renewable

Division of Environmental Management 937-333-3725

The following slides are supplementary information

1

Sampling Results

Parameter	Unit	Date							
		8/5/2008	9/12/2008	7/23/2009	6/3/2010	10/26/2010	6/20/2011	12/5/2011	7/26/2012
VOC's	microgram/L	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
sVOC's	microgram/L	bdl	bdl	bdl	bdl	bdl			
Ammonia (undis N)	mg/L	na	0.114	na	0.17	0.13	<0.05	<0.05	0.085
Nitrate/Nitrite (N)	mg/L	0.832	1.59	5.6	0.94	1.2	0.8	0.0617	0.899
Phosphate (PO4)	mg/L	0.584	<0.310	0.27	0.07	0.31	<0.1	<0.1	<0.1
Total Metals									
Antimony	mg/L	0.000809	0.00132	na	na	na	<0.001	< 0.001	< 0.001
Arsenic	mg/L	<0.002	<0.004	<0.015	< 0.003	<0.003	<0.01	<0.01	< 0.01
Barium	mg/L	na	na	0.0276	0.0196	0.0241	0.0113	0.00985	0.0216
Beryllium	mg/L	<0.4	<0.4	na	na	na	<0.001	<0.001	< 0.001
Cadmium	mg/L	<0.0008	0.00102	<0.01	<0.01	<0.01	<0.001	< 0.001	< 0.001
Chromium	mg/L	0.002	0.00715	<0.01	<0.01	0.0032	<0.01	<0.01	<0.01
Copper	mg/L	0.0228	0.0397	na	na	na	<0.005	<0.005	0.00708
Lead	mg/L	0.145	0.285	0.041	0.105	0.0835	0.0169	0.0384	0.0214
Mercury	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002
Nickel	mg/L	0.00242	0.00423	na	na	na	<0.005	< 0.005	< 0.005
Selenium	mg/L	<0.004	<0.004	<0.02	<0.005	<0.005	< 0.01	<0.01	< 0.01
Silver	mg/L	<0.0002	0.000221	<0.01	<0.01	<0.01	< 0.0005	<0.0005	<0.0005
Thallium	mg/L	<0.0004	<0.0004	na	na	na	<0.001	< 0.001	< 0.001
Zinc	mg/L	0.401	0.666	na	na	na	0.0532	0.0917	0.149

Comments

Replanted some seedlings and added media. It was also one of the first good rains in awhile.

first rain in a

while

Specifications ELEMENT DESCRIPTION

Module sizes (nominal)

Depth of modules (three depths)

Weight of planted modules (when wet)

Module material

Module drainage clearance above roof

Drainage/root resistance medium

Slip sheet protection fabric

2 ft x 2 ft x 4 in 2 ft x 4 ft x 4 in

2.5 in, 4 in, and 8 in

2.5-in depth – Approx. 11-13 lb/ ft2 4-in depth – Approx. 18-22 lb/ ft2

100% post-industrial recycled HighMolecular Weight Polyethylene.Protected with UV inhibitors andstabilizers. – 150 mil (2.5 and 4 in)

0.5 in

3-oz spunbonded polypropylene geotextile

6-oz non-woven geotextile slip sheet.

GreenGrid® Green Roof Extensive Plant Species (4" depth modules) - Dayton City Hall

ļ

Botanic Name	Common Name	Mature Height (in)	Mature Width (in)	Flower Color	Foliage Color	Months in Bloom
Sedum floriferum	Weihenstephaner Gold	3-6	12-18	Yellow	Green	June-Aug
Sedum kamtschaticum	chaticum Kamtschaticum Stonecrop		8-10	Yellow	Green	June-July
Sedum reflexum	Reflexum Stonecrop	4-6	12-18	Yellow	Blue	July
Sedum sexangular	Sexangulare Stonecrop	6-8	6-8	Yellow	Green	June-July
Sedum spurium 'Fuldaglut'	Fuldaglut Stonecrop	3-6	12	Ruby red	Red-Green	July
Sedum spurium 'John Creech'	John Creech Stonecrop	2-3	12-18	Pink	Green	July-Aug

INSTALLATION

- Modules arrive pre-planted, palletized, and shrink-wrapped for stability.
- Palletized modules hoisted to the roof (crane).
- Delivery of Materials by a 53-foot Tractor Trailer
- Crane set up along on Ludlow (east end of building)

GreenGrid® Green Roof Logistics

- Coordinated in advance to minimize disruptions (Saturday installation)
- Installation ~8 hours

Equipment Requirements:

40-ton Crane (minimum) Safety Equipment (flags, cones, caution tape, etc) Hose for irrigation

Labor Requirements:

- 1 Foreman/Safety Monitor
 - 1 Crane Operator
 - 1 Rigger

1 Crane Signaler 4 Laborers to offload/install modules Street Maintenance Heavy Equipment Parking Lot Drain Upgrade Project

The City of Dayton upgraded a three (3) catch basin storm sewer which captures run-off from a one (1) acre heavy equipment parking lot associated with our Street Maintenance Department. The purpose of the upgrade is to reduce or prevent oils and debris from flowing to the MS4 which discharges to the Mad River and subsequently to the Great Miami River. This was accomplished by adding filter inserts to the catch basins and replacing the last catch basin with a new outlet structure to act as a sediment/oil trap.

The upgrade included placing custom made Flexstorm[®] inlet filters in all three catch basins and enlarging the outlet catch basin with a manhole structure to create a sump for the capture of sediments. A Nyloplast[®] Snout[®] Structure has been installed on the discharge pipe to prevent oils and other floatables from discharging to the MS4.

As part of the structures performance evaluation, the catch basins and manhole were cleaned and the sediments and the amount of water recovered were measured. A total of 7500 lbs. of water and debris were removed from the separator, including ~1 cubic yard of sandy sediment and 800 gallons of water.

Diagrams depicting the two options are as follows